Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This paper presents a generative statistical model for analyzing time series of planar shapes. Using elastic shape analysis, we separate object kinematics (rigid motions and speed variability) from morphological evolution, representing the latter through transported velocity fields (TVFs). A principal component analysis (PCA) based dimensionality reduction of the TVF representation provides a finite-dimensional Euclidean framework, enabling traditional time-series analysis. We then fit a vector auto-regressive (VAR) model to the TVF-PCA time series, capturing the statistical dynamics of shape evolution. To characterize morphological changes,we use VAR model parameters for model comparison, synthesis, and sequence classification. Leveraging these parameters, along with machine learning classifiers, we achieve high classification accuracy. Extensive experiments on cell motility data validate our approach, demonstrating its effectiveness in modeling and classifying migrating cells based on morphological evolution—marking a novel contribution to the field.more » « lessFree, publicly-accessible full text available March 1, 2027
-
ABSTRACT Mediation analysis is widely utilized in neuroscience to investigate the role of brain image phenotypes in the neurological pathways from genetic exposures to clinical outcomes. However, it is still difficult to conduct mediation analyses with whole genome‐wide exposures and brain subcortical shape mediators due to several challenges including (i) large‐scale genetic exposures, that is, millions of single‐nucleotide polymorphisms (SNPs); (ii) nonlinear Hilbert space for shape mediators; and (iii) statistical inference on the direct and indirect effects. To tackle these challenges, this paper proposes a genome‐wide mediation analysis framework with brain subcortical shape mediators. First, to address the issue caused by the high dimensionality in genetic exposures, a fast genome‐wide association analysis is conducted to discover potential genetic variants with significant genetic effects on the clinical outcome. Second, the square‐root velocity function representations are extracted from the brain subcortical shapes, which fall in an unconstrained linear Hilbert subspace. Third, to identify the underlying causal pathways from the detected SNPs to the clinical outcome implicitly through the shape mediators, we utilize a shape mediation analysis framework consisting of a shape‐on‐scalar model and a scalar‐on‐shape model. Furthermore, the bootstrap resampling approach is adopted to investigate both global and spatial significant mediation effects. Finally, our framework is applied to the corpus callosum shape data from the Alzheimer's Disease Neuroimaging Initiative.more » « lessFree, publicly-accessible full text available August 1, 2026
-
Functional data contains two components: shape (or amplitude) and phase. This paper focuses on a branch of functional data analysis (FDA), namely Shape-Based FDA, that isolates and focuses on shapes of functions. Specifically, this paper focuses on Scalar-on-Shape (ScoSh) regression models that incorporate the shapes of predictor functions and discard their phases. This aspect sets ScoSh models apart from the traditional Scalar-on-Function (ScoF) regression models that incorporate full predictor functions. ScoSh is motivated by object data analysis, {\it, e.g.}, for neuro-anatomical objects, where object morphologies are relevant and their parameterizations are arbitrary. ScoSh also differs from methods that arbitrarily pre-register data and uses it in subsequent analysis. In contrast, ScoSh models perform registration during regression, using the (non-parametric) Fisher-Rao inner product and nonlinear index functions to capture complex predictor-response relationships. This formulation results in novel concepts of {\it regression phase} and {\it regression mean} of functions. Regression phases are time-warpings of predictor functions that optimize prediction errors, and regression means are optimal regression coefficients. We demonstrate practical applications of the ScoSh model using extensive simulated and real-data examples, including predicting COVID outcomes when daily rate curves are predictors.more » « lessFree, publicly-accessible full text available November 25, 2025
-
Wasserstein distances form a family of metrics on spaces of probability measures that have recently seen many applications. However, statistical analysis in these spaces is complex due to the nonlinearity of Wasserstein spaces. One potential solution to this problem is Linear Optimal Transport (LOT). This method allows one to find a Euclidean embedding, called {\it LOT embedding}, of measures in some Wasserstein spaces, but some information is lost in this embedding. So, to understand whether statistical analysis relying on LOT embeddings can make valid inferences about original data, it is helpful to quantify how well these embeddings describe that data. To answer this question, we present a decomposition of the {\it Fr\'echet variance} of a set of measures in the 2-Wasserstein space, which allows one to compute the percentage of variance explained by LOT embeddings of those measures. We then extend this decomposition to the Fused Gromov-Wasserstein setting. We also present several experiments that explore the relationship between the dimension of the LOT embedding, the percentage of variance explained by the embedding, and the classification accuracy of machine learning classifiers built on the embedded data. We use the MNIST handwritten digits dataset, IMDB-50000 dataset, and Diffusion Tensor MRI images for these experiments. Our results illustrate the effectiveness of low dimensional LOT embeddings in terms of the percentage of variance explained and the classification accuracy of models built on the embedded data.more » « lessFree, publicly-accessible full text available November 15, 2025
-
Free, publicly-accessible full text available December 2, 2025
-
Free, publicly-accessible full text available December 2, 2025
-
Addressing the fundamental challenge of signal estimation from noisy data is a crucial aspect of signal processing and data analysis. Existing literature offers various estimators based on distinct observation models and criteria for estimation. This paper introduces an innovative framework that leverages topological and geometric features of the data for signal estimation. The proposed approach introduces a topological tool -- {\it peak-persistence diagram} (PPD) -- to analyze prominent peaks within potential solutions. Initially, the PPD estimates the unknown shape, incorporating details such as the number of internal peaks and valleys. Subsequently, a shape-constrained optimization strategy is employed to estimate the signal. This approach strikes a balance between two prior approaches: signal averaging without alignment and signal averaging with complete elastic alignment. Importantly, the proposed method provides an estimator within a statistical model where the signal is affected by both additive and warping noise. A computationally efficient procedure for implementing this solution is presented, and its effectiveness is demonstrated through simulations and real-world examples, including applications to COVID rate curves and household electricity consumption curves. The results showcase superior performance of the proposed approach compared to several current state-of-the-art techniques.more » « lessFree, publicly-accessible full text available November 1, 2025
-
Free, publicly-accessible full text available November 9, 2025
-
How can one analyze detailed 3D biological objects, such as neuronal and botanical trees, that exhibit complex geometrical and topological variation? In this paper, we develop a novel mathematical framework for representing, comparing, and computing geodesic deformations between the shapes of such tree-like 3D objects. A hierarchical organization of subtrees characterizes these objects - each subtree has a main branch with some side branches attached - and one needs to match these structures across objects for meaningful comparisons. We propose a novel representation that extends the Square-Root Velocity Function (SRVF), initially developed for Euclidean curves, to tree-shaped 3D objects. We then define a new metric that quantifies the bending, stretching, and branch sliding needed to deform one tree-shaped object into the other. Compared to the current metrics such as the Quotient Euclidean Distance (QED) and the Tree Edit Distance (TED), the proposed representation and metric capture the full elasticity of the branches (i.e., bending and stretching) as well as the topological variations (i.e., branch death/birth and sliding). It completely avoids the shrinkage that results from the edge collapse and node split operations of the QED and TED metrics. We demonstrate the utility of this framework in comparing, matching, and computing geodesics between biological objects such as neuronal and botanical trees. We also demonstrate its application to various shape analysis tasks such as (i) symmetry analysis and symmetrization of tree-shaped 3D objects, (ii) computing summary statistics (means and modes of variations) of populations of tree-shaped 3D objects, (iii) fitting parametric probability distributions to such populations, and (iv) finally synthesizing novel tree-shaped 3D objects through random sampling from estimated probability distributions.more » « less
An official website of the United States government
